Cyclosporin A inhibits chromium(VI)-induced apoptosis and mitochondrial cytochrome c release and restores clonogenic survival in CHO cells.
نویسندگان
چکیده
A variety of key events in the molecular apoptotic pathway involve the mitochondria. Cyclosporin A (csA) affects the mitochondria by inhibiting the mitochondrial permeability transition (MPT), thereby preventing disruption of the transmembrane potential. The role of the MPT in apoptosis is not fully understood, but inhibition of the MPT may prevent the release of mitochondrial caspase activators, such as cytochrome c (cyt c), into the cytosol. Certain hexavalent chromium [Cr(VI)] compounds are known occupational respiratory tract toxins and carcinogens. We have previously shown that these compounds induce apoptosis as a predominant mode of cell death and that this effect can be observed in cell culture using soluble Cr(VI). We show here that Cr(VI)-induced apoptosis in Chinese hamster ovary (CHO) cells involves disruption of mitochondrial stability. Using a cyt c-specific monoclonal antibody, we observed a dose-dependent release of mitochondrial cyt c in cytosolic extracts of CHO cells exposed to apoptogenic doses of sodium chromate. Co-treatment of these cells with csA inhibited the release of cyt c and abrogated Cr(VI)-induced apoptosis as determined by a reduction in internucleosomal DNA fragmentation. Co-treatment with csA also markedly increased clonogenic survival of Cr(VI)-treated CHO cells. In contrast, the general caspase inhibitor Z-VAD-FMK markedly inhibited most of the morphological and biochemical parameters of apoptosis but did not prevent cyt c release and did not increase clonogenic survival. These results suggest that the MPT plays an important role in the regulation of mitochondrial cyt c release and that this may be a critical point in the apoptotic pathway in which cells are irreversibly committed to death.
منابع مشابه
Role of mitochondrial cytochrome c in cocaine-induced apoptosis in coronary artery endothelial cells.
Cocaine induces apoptosis in coronary artery endothelial cells. Yet the cellular and molecular mechanisms are not clear. Given that cocaine has profound toxic effects on the mitochondria, the present study examined the role of mitochondrial cytochrome c in cocaine-mediated apoptosis. Using cultured bovine coronary artery endothelial cells, we found that cocaine-induced apoptosis was dose depend...
متن کاملCytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...
متن کاملCytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...
متن کاملCyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria.
BACKGROUND Several experimental and clinical studies suggest that cyclosporin A (CSA) treatment reduces transplant atherosclerosis. Because oxidized LDL (oxLDL) is believed to play a key role in the development of atherogenesis, causing injury to the endothelium, and has been shown to induce apoptosis of endothelial cells, we investigated whether CSA inhibits oxLDL-induced apoptosis. METHODS ...
متن کاملMechanism of apoptosis and determination of cellular fate in chromium(VI)-exposed populations of telomerase-immortalized human fibroblasts.
The cellular responses to carcinogen exposure influence cellular fate, which in turn modulates the neoplastic response. Certain hexavalent chromium [Cr(VI)] compounds are implicated as occupational respiratory carcinogens at doses that are both genotoxic and cytotoxic. We examined the mechanism of Cr(VI)-induced apoptosis in normal human fibroblasts (BJ) immortalized by human telomerase gene tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2000